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Propagation, transmission and reflection properties of linearly polarized plane waves and arbitrarily short
electromagnetic pulses in one-dimensional dispersionless dielectric media possessing an arbitrary space-time
dependence of the refractive index are studied by using a two-component, highly symmetric version of Max-
well’s equations. The use of any slow varying amplitude approximation is avoided. Transfer matrices of sharp
nonstationary interfaces are calculated explicitly, together with the amplitudes of all secondary waves produced
in the scattering. Time-varying multilayer structures and spatiotemporal lenses in various configurations are
investigated analytically and numerically in a unified approach. Several effects are reported, such as pulse
compression, broadening and spectral manipulation of pulses by a spatiotemporal lens, and the closure of the
forbidden frequency gaps with the subsequent opening of wave number band gaps in a generalized Bragg
reflector.
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I. INTRODUCTION

Propagation of electromagnetic waves through stationary
inhomogeneous media is a subject that has been extensively
studied in the past �1,2�.

The physics of moving dielectric media �3–7� is attracting
renewed attention, mainly due to recent works by Visser �8�
and Leonhardt and Piwnicki �9�. Particularly important is the
formal equivalence between the equations of general relativ-
ity and the equations of light propagation in arbitrarily mov-
ing dielectric media, which has been fully recognized in the
early literature �10�.

Much less attention, however, has been devoted to the
case of light propagation through an inhomogeneous medium
which possesses a time-dependent refractive index, and in
particular light scattering by nonstationary interfaces be-
tween two media with different refractive indices. This must
be distinguished from the above case of a moving medium,
in that the nonstationary interfaces may possess arbitrary ve-
locity v, in the range 0� �v���. This well-known fact �11�
is not in conflict with special relativity because the medium
itself is immobile, and only the interfaces of the transition
regions of the refractive index change in time. This apparent
motion of the interfaces is due to the time-varying nature of
the refractive index, since it is not connected to the real
motion of any physical particle or wave, and is not restricted
by any limiting velocity, so that the function n�z , t� that de-
scribes the spatiotemporal variations of the refractive index
is completely arbitrary. In particular Lorentz transformations,
which of course play a crucial role in the physics of moving
media, are not applicable to the physics of media with a
time-varying refractive index. For example, the field ampli-
tudes of the waves generated inside the latter media are not
found via Lorentz boosts, and the constitutive relations be-
tween the dielectric displacement and the electric field are
fixed and not subject to Lorentz transformations, in contrast
with the physics of moving media, described, for instance, in
Refs. �3,4�.

The first attempt to develop a theory for the very special
case of plane wave propagation in a homogeneous medium

with a sudden steplike temporal variation of refractive index
has been given by Morgenthaler in 1958 �12�, but only after
more than a decade this work has been noticed and other
aspects of propagation in the same system have been ex-
plored by Felsen and Whitman in 1970 �13� and by Fante in
1971 �14�. A more recent review of the salient features of the
optics of nonstationary media, with particular emphasis on
plasma physics applications, has been given by Shvartsburg
in 2005 �15�.

The purpose of the present paper is to study the effect of
an arbitrary space and time dependence of refractive index
n�z , t� on the propagation of electromagnetic waves and
pulses in media without dispersion. We shall provide a uni-
fied theoretical approach, with which we are able to study the
scattering of light by nonstationary interfaces moving at ar-
bitrary velocities. Light propagation through media with a
small number of nonstationary interfaces has been investi-
gated by a variety of experimental techniques �19–24�, as
discussed further in the final discussion and conclusions sec-
tion. Our results here include these cases but also address the
behavior that could be achieved by further extension to an
arbitrary number of well-controlled nonstationary interfaces.
Our aim is to demonstrate the potential of nonstationary di-
electrics for light control and manipulation.

The paper is organized as follows.
In Sec. II we construct the basic theoretical tools that are

necessary for the analysis and the understanding of the build-
ing blocks of spatiotemporal dielectric structures. First of all,
in Sec. II A our master equation �Eq. �2�� is derived from
Maxwell’s equations, and its geometrical interpretation in
terms of forward- and backward-moving fields is given. Af-
ter that, in Sec. II B the interface transfer matrix for the
general case is calculated explicitly, while in Sec. II C the
expression for free propagation when the fields are far from
interfaces is derived, and a criterion for defining sharp inter-
faces is found. In Sec. II D we use special orthogonal vari-
ables to introduce plane wave expansion of arbitrary fields,
which allows us to find the transfer propagation matrix in
Fourier space.

In Sec. III we describe three fundamental applications of
the concept expressed in Sec. II. In Sec. III A the reflection
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and transmission coefficients of several important configura-
tions of nonstationary interfaces are derived, and numerical
simulations of pulse scattering from interfaces are provided
in order to confirm the theoretical expressions. In Sec. III B
we discuss nonstationary multilayer structures, and provide
the analogue of quarter wavelength condition for a general-
ized nonstationary Bragg reflector, and the transformation of
the band structure and the bandgaps under rotations of the
�z ,ct� plane are examined. In Sec. III C we deal with a spe-
cial device, the spatiotemporal analogue of a lens. We show,
including numerical simulations, how such a lens can be
used to perform pulse compression or broadening, with the
consequent manipulation of pulse frequency and wave num-
ber.

The results presented in Secs. II and III are obtained by
solving the full Maxwell equations. We derive in Sec. IV an
exact equation to describe the evolution of the pulse enve-
lope. We consider how this equation is modified if we intro-
duce a slowly varying envelope approximation �SVEA� in
time. Numerical simulations are then presented to show that
the SVEA introduces errors in the detail of pulse propagation
for the problems we are considering, due to the neglect of
effects associated with sharp spatiotemporal interfaces. Fi-
nally we summarize our conclusions in Sec. V.

II. ANALYTICAL RESULTS

A. Main equation

Let us start by assuming that we have an electromagnetic
wave, with its electric and magnetic fields E
= (E�z , t� ,0 ,0)T and B= (0,B�z , t� ,0)T linearly polarized
along the directions x̂ and ŷ respectively. The x component of
the electric field and the y component of the magnetic field
depend on the variable z only, because in conditions of nor-
mal incidence we assume that any change of the time-
dependent refractive index occurs along the propagation di-
rection ẑ. The linear polarization PL of the medium will be
written in the form PL=��z , t�E= (n�z , t�2−1)E, where � is
the linear susceptibility of the nonmagnetic medium and
n�z , t� is the linear space-time dependent refractive index,
which is assumed for simplicity to be independent of the
frequency � and to be real. This model for the susceptibility
is obviously simplified, but for the purposes of the present
paper the frequency dispersion of the refractive index is not
essential and will be disregarded for sake of clarity. Here and
in the following we choose to use the very convenient
Heaviside-Lorentz units system �3�, in which E, B, and PL
are measured in the same physical units �V/m�, and there are
no extra multiplying factors 4�, �0 and �0 in Maxwell’s
equations. Maxwell’s equations for the scalar quantities
E�z , t� and B�z , t� can be written in the following form �c is
the speed of light in vacuum�:

�t�n2E� + c�zB = 0, �tB + c�zE = 0, �1�

where the two divergence Maxwell’s equations are automati-
cally satisfied due to the chosen polarization and the normal
incidence assumption.

It is possible to cast Eqs. �1� in a different form, which
turns out to be much more convenient for the analysis of

time-varying photonic crystals and lenses, using the fact that
the problem under consideration is �1+1�-dimensional. De-
fining local right- and left-moving fields, F±��nE±B� /2,
we can write Eqs. �1� in the following compact form:

��̂ + 	x��̂ ln n�	x
+�
 = 0, �2�

where 
��F+ ,F−�T �with the superscript T we indicate vec-
tor transposition�, and

	0 = �1 0

0 1
�, 	x = �0 1

1 0
� 	z = �1 0

0 − 1
� , �3�

are the identity matrix and the first and third �real� Pauli
matrices. Moreover, 	 j

±��	0±	 j� /2 are the Pauli projectors
�j= 	x ,z
�, and �̂ is the derivative operator

�̂ �
n

c
	0�t + 	z�z � ��+ 0

0 �− � , �4�

with �±��n /c��t±�z. ��+ ,�−� can be thought of as basis vec-
tors for a tangent space T M of the two-dimensional mani-
fold M formed by the �z ,ct� plane equipped with a space-
time dependent refractive index function n�z , t� �16�. The
spatiotemporal evolution of the dielectric structure is only
contained in the logarithmic term �̂ ln n, which couples the
forward- and the backward-propagating components of the
electromagnetic field. All conclusions of this paper are based
on an analysis of the main Eq. �2�.

One can appreciate the remarkably high level of symme-
try between space and time contained in Eq. �2� with the
following arguments. The propagation of the local field F+

occurs only along the �local� direction specified by �+, while
the field F− evolves only along �−. Therefore, �+ and �− de-
termine, at each point of the �z ,ct� plane, the local light cone
along which the forward and backward components of the
electric field propagate. The geometrical meaning of our con-
struction based on Eq. �2� is depicted in Fig. 1, where ex-
amples of the local light cones defined by the directions de-
termined by �± and the propagating forward and backward
fields F± are shown �see also caption for further explanation
of the geometrical meaning of our construction�.

Contrary to a widespread approach �17�, we do not make
use of any complex slowly varying variable, such as a field
envelope, and therefore Eq. �2� remains valid for all regimes
of propagation, and all quantities appearing in Eq. �2� are
real. A slow variable version of Eq. �2� will be examined in
Sec. IV, and a comparison between the exact approach of Eq.
�2� and the approximate one of Eq. �45� will be presented.

Note that the coupling between F+ and F− is only induced
via the logarithmic term �̂ ln n in Eq. �2�, so that only space-
time variations of the refractive index are responsible for
coupling forward and backward waves during propagation.
We can therefore identify two basic cases in which the ana-
lytical solution of Eq. �2� is straightforward, namely the case
where n changes abruptly from n1 to n2 along a line in the
�z ,ct� plane, and the case of a homogeneous and static me-
dium, where Eq. �2� simply becomes �̂
=0. In the following
two subsections these two cases are examined individually.
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B. Calculation of the interface matrix

We assume that the refractive index changes in a steplike
fashion along a nonstationary interface in the �z ,ct� plane,
postponing the discussion of the validity of this sharpness
assumption to the end of the next paragraph. The generic
form of the refractive index is then given by n�z , t�=n1

+ �n2−n1���cos���z−sin���ct�, where n1,2 are the refractive
indices of the first and the second media, and � is the Heavi-
side function. � denotes the angle between the ct axis and the
interface in the �z ,ct� plane, which we will occasionally also
parameterize via the slope parameter =tan���. Note that the
quantity c represents the velocity of the nonstationary in-
terface. This velocity is arbitrary, and in particular it can be
greater than the local speed of light. This is not in conflict
with special relativity, because the nonstationary interface is
not associated with a moving medium, and it constitutes one
of the main differences between the present work and previ-
ous literature on nonstationary dielectrics. For different as-
pects of the physics of moving media the reader is referred to
Chap. IX of Landau �4�, section I.5 of Jackson �3�, and to
more recent works by Yeh and collaborators �5�, Saca �6�,
Huang �7�, and by Leonhardt and Piwnicki �9�.

Our task is now to find an appropriate transfer matrix
connecting the amplitudes of the fields F± on either side of
the interface. We call this an interface matrix. Using the
appropriate orthogonal coordinates

p�z,t� = cos���z − sin���ct =
z − ct
�1 + 2

, �5�

q�z,t� = sin���z + cos���ct =
z + ct
�1 + 2

, �6�

normal �p� and parallel �q� to the interface in the �z ,ct�
plane, we can express the derivative operator in Eq. �2� as

�̂= Â�p+ B̂�q, with the matrices Â and B̂ defined as

Â � �	z cos��� − n	0 sin����

B̂ � �	z sin��� + n	0 cos���� . �7�

Taking into account that �qn=0 we can write Eq. �2� in the
form

��p + Â−1B̂�q + Â−1	xÂ��p ln n�	x
+�
 = 0. �8�

Writing Eq. �8� in the basis �nE ,B�T= �	x+	z�
 yields the
following set of ordinary differential equations:

�p�ln nE� +
1

n22 − 1
�− �1 + n2��q�ln nE� − n�1 + 2�

�qB

�nE�

+ �1 + n22���pn� = 0, �9�

�p�B� +
1

n22 − 1
�− �1 + n2��q�B� − n�1 + 2��q�nE�

+ 2n��pn��nE�� = 0. �10�

We can now integrate Eq. �9� from p=−� to p= +� across the
interface at p=0, where � is an arbitrarily small positive
number. If B and �nE� are differentiable with respect to q
�i.e., �qB�� and �q ln nE���, and additionally n22�1
across the interface, then the contributions to this integral
from terms containing �q�B� and �q�nE� are proportional to �
and will therefore vanish in the limit �→0; Eq. �9� can then
be integrated analytically. Under the same conditions Eq.
�10� can also be integrated analytically and we obtain a linear
relation between �n1E1 ,B1�T and �n2E2 ,B2�T. In the �F+ ,F−�T

basis this relation can be expressed via the interface matrix
D�12� for the steplike transition that connects the fields F± in
medium 1 with those in medium 2:

�F1
+

F1
− � = D�12��F2

+

F2
− � . �11�

Explicitly we find

D�12� =
1

2n2��n1 + n2�
1 − n2

1 − n1
, �n1 − n2�

1 + n2

1 − n1

�n1 − n2�
1 − n2

1 + n1
, �n1 + n2�

1 + n2

1 + n1
� .

�12�

This interface matrix possesses the classical property
�D�12��−1=D�21�. For future reference it is also useful to cal-
culate

det D�12� = �1 − n2
22

1 − n1
22�n1

n2
. �13�

FIG. 1. The geometry of propagation of fields Fj
± along the

directions determined by � j
± is shown, where j= 	1,2
 refers to the

refractive index nj. The gray area represents the spatiotemporal re-
gion of refractive index change in the plane �z ,ct�. For this simple
example, the external and the internal regions have uniform indices
n1, and n2, respectively. Bold dashed arrows indicate the propagat-
ing fields, generated by the scattering of F1

+ from an interaction
point on the interface. Local light cones are also indicated. Assum-
ing that n2�n1, wider light cones are associated with index n1,
whereas narrower light cones are associated with index n2. Only
space-time variations of refractive index are able to generate cou-
pling between forward and backward waves in Eq. �2�, so that in the
case shown in the figure only the interface is able to scatter an
incident electromagnetic wave.
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Note that in the derivation of Eq. �12� we have used that
n22�1 as we cross the interface. In particular this implies
that our derivation is not valid in the regime where 1/n2
� ���1/n1. The physical reason for this will be discussed
at the end of the next subsection, after we introduce the free
propagation matrix.

C. Free propagation in real space

From the knowledge of the general transfer matrix for a
nonstationary interface �Eq. �12��, it is possible to construct
the transfer matrix for more complicated nonstationary ob-
jects, such as multilayer structures, which will be done in
Sec. III. However, we still need to construct one missing
ingredient, the so-called propagation matrix, which models
the propagation of the fields along the p-direction far from
the interfaces, where the refractive index is constant. Under
this condition, Eq. �2� simply becomes �̂
=0, which using
the definitions of Eq. �7� can be expressed as

Â�p
 + B̂�q
 = 0. �14�

To solve Eq. �14�, we first write the derivatives �p,q as first
order finite differences, namely �p
= �
�p+�p ,q�
−
�p ,q�� /�p and �q
= �
�p ,q+�q�−
�p ,q�� /�q, and
then substitute into the equation:

Â

�p + �p,q� − 
�p,q�

�p
+ B̂


�p,q + �q� − 
�p,q�
�q

= 0.

�15�

For a fixed �p, we can eliminate the term proportional to

�p ,q� in Eq. �15� with an appropriate choice of �q, differ-
ent for the two components of the 
-vector. From Eqs. �7�
one obtains

�q± =
sin��� ± n cos���
cos��� � n sin���

�p , �16�

where the refractive index n refers to the homogeneous layer
under consideration, and �q± refers to the component F±.
With the particular choice of Eq. �16�, the free propagation
of the optical fields for constant refractive index assumes a
particularly simple and effective form, which we write for
the two components:

F±�p + �p,q� = F±�p,q + �q±� . �17�

This means that advancing the field F± along the p direction
by a small step �p �keeping q constant�, is equivalent to
advancing the same field by an amount equal to �q± along
the q-direction �keeping p constant�. The geometrical inter-
pretation of Eq. �17� is that the points �p+�p ,q� and �p ,q
+�q±� belong to the same light cone.

The concept of the interface matrix �Eq. �12�� expressed
in Sec. II B is only valid for a sufficiently sharp interface,
i.e., if the interface transition layer is sufficiently thin, such
that the effect of the propagator �17� can be neglected while
traversing the interface. For a given interface width �p we
can calculate via Eq. �16� the length of the interval �q±

along the interface which is relevant for the propagator. If F±

does not change significantly on this interval, i.e., if

��q ln F±  ± n

1 � n
�p� � 1, �18�

then the propagator is negligible and the use of the interface
matrix of Eq. �12� is justified. Note however that the left-
hand side of Eq. �18� becomes singular for n= ±1, and then
Eq. �18� will not be fulfilled for any choice of �p. In par-
ticular, for n2�n1, if 1 /n2��1/n1, then during the inte-
gration of Eq. �8� we will reach the point where the singu-
larity in Eq. �18� occurs. This is precisely at the point where

the matrix Â−1 also becomes singular. The condition on the
sharpness of the interface which was used in the derivation
of Eq. �12� can therefore in principle not be fulfilled and
therefore we shall not use Eq. �12� in the regime of 1/n2
��1/n1.

D. Plane wave expansion. Calculation of propagation matrix

So far we have expressed the interface matrix of Eq. �12�
and the free propagator of Eq. �17� as operating on the fields
vector 
�p ,q�, where p and q are the rotated variables of
Eqs. �5� and �6�. However, the interface matrix of Eq. �12�
connects the fields F+ and F− only along the p direction,
while not affecting the fields along the q direction at all. It is
therefore natural to consider a plane wave expansion along
the q axis,


�p,q� = �
�̃


�̃�p�e−i�̃q. �19�

Then Eq. �11� transforms into


1
�̃ = D�12�
2

�̃, �20�

which means that the generalized frequency �̃ is conserved
across the interface. �̃ has the dimension of a wavenumber,
and physically it represents the momentum associated to the
propagation along the q direction.

Inside a homogeneous medium we can expand 
�p ,q� in
plane waves along both the p and q axes:


�p,q� = �
�̃,k̃


�̃,k̃ei�k̃p−�̃q�. �21�

Since each plane wave component has to fulfill the propaga-

tor equation �̂
�̃,k̃ei�k̃p−�̃q�=0, we obtain for the two compo-
nents F± the following dispersion relations:

k̃± =
sin��� ± n cos���
cos��� � n sin���

�̃ , �22�

which can also be directly deduced from Eq. �16�. This en-
ables us to rewrite the free propagator �17� for the Fourier
components as


�̃�p + �p� = P��p�
�̃�p� = �eik̃+�p 0

0 eik̃−�p
�
�̃�p� ,

�23�

an expression that will be useful in Sec. III B.
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As a final issue, it is worth writing explicitly the transfor-

mation law between the momenta �k̃ , �̃�, reciprocal to the
real-space variables �p ,q� respectively, and �k ,��, reciprocal
to the variables �z ,ct�. By using Eqs. �5� and �6� and the
expansion of Eq. �21� we obtain

� k̃

�̃
� = � cos��� sin���

− sin��� cos���
�� k

�/c
� . �24�

From the simple rotation of Eq. �24� one can deduce some
important physical consequences. First of all for �=0 �
=0� it follows that k̃=k and �̃=� /c, so that in the static case
the p direction coincides with the z-axis and the q direction
coincides with the ct axis by definition. But because the q
direction is associated with the delocalization direction of an
arbitrary plane wave in Eq. �21�, it follows that during the
scattering process of light by a static interface the quantity
�̃=� /c is conserved. This corresponds to the energy conser-
vation at the interaction point. In other words, all generated
waves will have exactly the same frequency. The other lim-
iting case is when �→� /2 �→��. For this case the role of
frequency and wave number is reversed, and from Eq. �24�
we have k̃=� /c and �̃=−k. The delocalization direction is
still along q, which now points along the z-axis. Therefore,
during the scattering it is the wave number �i.e., the momen-
tum� that is conserved at the interaction point, and in general
all generated waves will have different frequencies but the
same momentum. For an intermediate situation �0��
�� /2�, the conserved quantity �̃ corresponds to a combina-
tion of k and � /c according to the rotation of Eq. �24�.

III. APPLICATIONS

In the present section we discuss three fundamental appli-
cations of the concepts expressed in Sec. II B, and in particu-
lar of the transfer interface matrix given by Eq. �12� and the
free propagator given in real space by Eq. �17� and in Fourier
space by Eq. �23�.

In Sec. III A we analyze the physics of scattering by non-
stationary interfaces in different interesting physical configu-
rations, shown in Fig. 2. In Sec. III B we calculate the band
structure and the forbidden band gaps of a nonstationary
photonic crystal, finding a different effect: The closure of the
frequency band gap for a certain value of �=�cr1, and the
consequent opening of the wave number band gap for an-
other �=�cr2. In Sec. III C we show that it is possible to
think of a dynamical device, analogous to a spatiotemporal
lens, that efficiently performs pulse broadening and compres-
sion, with simultaneous frequency and wave number ma-
nipulation of pulses.

A. Nonstationary interfaces

The panel of Fig. 2 shows the four most important cases
of interface configurations which can be analyzed with the
help of Eq. �12�. Let us first consider Fig. 2�a� which shows
the space-time diagram of a conventional static interface ��
=0, =0� between two media of refractive indices n1 and n2
respectively in the plane �z ,ct�. Because all the variation of

the refractive index is spatial, and the variable p defined in
Eq. �5� can be identified with the spatial coordinate z, we call
this a space-like interface. By taking the limit →0 in Eq.
�12� we find the well-known result for the interface matrix:

D=0
�12� =

1

2n2
�n1 + n2, n1 − n2

n1 − n2, n1 + n2
� . �25�

The transmission and reflection coefficients are then classi-
cally defined for F2

−=0 as

t �
F2

+

F1
+ =

1

D11
�12� =

2n2

n1 + n2
, �26�

r �
F1

−

F1
+ =

D21
�12�

D11
�12� =

n1 − n2

n1 + n2
. �27�

For 0� ���1/n2 as in Fig. 2�b� the configuration is similar
to the one in Fig. 2�a�. From the interface matrix Eq. �12� we
can now calculate the generalized transmission and reflection
coefficients according to the definitions of Eqs. �26� and �28�
as

t =
2n2

n1 + n2

1 − n1

1 − n2
, r =

n1 − n2

n1 + n2

1 − n1

1 + n1
. �28�

Note that for �0 and inside the parameter region 0� ��
�1/n2, the expressions given by Eq. �28� never show any
singularity in the denominator. However, for �0, we have

FIG. 2. Panel showing space-time diagrams of scattering of for-
ward and backward fields Fj

± �j= 	1,2
� from the four most impor-
tant interface configurations. �a� Spacelike interface �=0, �=0�,
which coincides with the conventional, static interface. �b� Interface
configuration with �0 and 0� ���1/n2. �c� Timelike interface,
= ±� ��= ±� /2�. �d� Interface configuration with �0 and
1/n1� ����.
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a singularity in the transmission coefficient for →1/n2.
This limit corresponds to the disappearance from the equa-
tions of one of the waves participating in the scattering �F2

+�,
which will travel exactly along the interface, so that t as
given by Eq. �28� cannot be used, and for �1/n2 the inci-
dent light never reaches the interface.

For ��=� Fig. 2�c� shows the configuration when the
refractive index changes abruptly and simultaneously in time
throughout all space �for some discussion of the experimen-
tal relevance of this concept see the conclusions, Sec. V�.
Because the variation of the refractive index occurs only
along the ct axis, we shall call this a timelike interface. From
Eq. �12� we obtain the interface matrix

D=�
�12� =

1

2n1
�n1 + n2, n2 − n1

n2 − n1, n1 + n2
� . �29�

For the calculation of the transmission and reflection coeffi-
cients we have now to set F1

−=0, and then instead of Eqs.
�26� and �27� we obtain

t �
F2

+

F1
+ = D11

�21� =
n1 + n2

2n2
, �30�

r �
F2

−

F1
+ = D21

�21� =
n1 − n2

2n2
. �31�

Similar formulas for this special case have been given by
Morgenthaler in 1958 �12�. For a more general ���1/n1
when the interface is tilted with respect to the time-like case,
the configuration is depicted in Fig. 2�d�. Then Eqs. �30� and
�31� generalize to

t =
1 − n1

1 − n2

n1 + n2

2n1
, r =

1 − n1

1 + n2

n2 − n1

2n1
. �32�

Even in this case, the expressions of t and r in Eq. �32� have
singularities for =1/n2 and =−1/n2 respectively, which
however are outside the region of validity of these formulas,
that is ���1/n1.

In Sec. II D we have seen that the frequency �̃ arising in
the plane wave expansion along q in Eq. �20� is conserved
across the interface. As we have already discussed previ-
ously, in the case of =0 �Fig. 2�a�� this is, with �̃=� /c, the
well-know frequency �i.e., energy� conservation at a spatial
interface. In the more interesting case =� �Fig. 2�c��, how-
ever, we see that �̃=−k, which means that wave number �i.e.,
momentum� is conserved at a timelike interface.

The scattering of finite pulses from the interfaces for all
four cases shown in Fig. 2 have been simulated by solving
numerically Eq. �2�, and results are shown in the panel of
Fig. 3. Electric field for the input pulse is taken of the form

Eini � E�z,t = 0� = E0 sech� z

w�
�cos�2�z

�
� , �33�

where E0 is the incident amplitude, and w is a dimensionless
parameter which measures the spatial width in units of �, the
pulse central wavelength. Without loss of generality, the in-
cident amplitude is in all cases normalized to the value E0
=1.

We have used a second order finite difference algorithm to
model the derivatives in Eq. �2� for the two components, and
a fourth order Runge-Kutta algorithm to advance the field in
time. Once the spatial distribution of the electric field over
the z axis at the initial instant of time Eini=E�z , t=0� is given,
the initial magnetic field Bini=B�z , t=0� can be found by im-
posing that there is no backward wave propagating for t=0,
i.e., F−=0, obtaining Bini�z�=n�z , t=0�Eini�z�, where n�z , t
=0� is the initial refractive index distribution. We use
Neumann-type boundary conditions, which means that we
impose that the derivatives of the optical fields vanish at the
boundaries of the spatial window, while the evolution of the
fields is calculated by advancing in time. In order to ensure
complete stability of the numerical algorithm it is sufficient
to impose that all fields are spatially localized and that the
temporal step of the grid �t and the spatial step of the grid
�z satisfy the following condition: �t��z2. For our simu-
lations we always use a spatial sampling of the optical fields
with a number of points equal to N=215, which is more than
sufficient in order to obtain extremely accurate results for
long propagation times, and to avoid the dangers of artifacts
due to numerical dispersion during the temporal evolution.

The panel of Fig. 3 shows propagation of the envelope of
the electric field �with the fast oscillations decoupled for sake
of clarity� during the scattering processes analogous to Figs.
2�a�–2�d� respectively. Here and in the following, contour
plots are given in the dimensionless variables �=ct /� and
�=z /�, with �=2�c /�0, and �0 is the central circular fre-

FIG. 3. �Color online� Panel showing the simulation of interac-
tion of an incoming pulse with the four sharp interface configura-
tions of Fig. 2. �a� Spacelike interface: =0. �b� =−0.3. Angle
�=−0.2915 radians is indicated with dashed lines. �c� Timelike in-
terface: =�. �d� =−2. Angle �=−1.1071 radians is indicated
with dashed lines. Refractive indices are n1=1 and n2=3. The
agreement with theoretical expressions is excellent for all cases.
Input pulse parameter w in Eq. �33� is w=1. Horizontal axis is
dimensionless space coordinate �=z /�, while the vertical axis is
dimensionless time coordinate �=ct /�, and � is the central pulse
wavelength.
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quency of the initial pulse. Note that Eq. �2� is solved di-
rectly in dimensionless units, therefore we do not need to
specify the scaling wavelength �, and results shown in the
figures can be adapted to the particular spatial scale that one
chooses to consider. The extension of the spatial grid used is
�window=300 in dimensionless units, which is relatively large
in order to ensure total spatial localization of all waves par-
ticipating in the scattering, although only a small portion of
this window is shown in the figures. The spatiotemporal
steps are ��=9.15�10−3 and ��=7.67�10−7. The pulse is
initially propagating at the speed of light in vacuum �n1=1�.
The sharp interface is modeled through a Heaviside function
n�z , t�=n1+ �n2−n1���z−ct�, with n2=3. The values of 
for Figs. 2�a�–2�d� are respectively =0, =−0.3, =�, and
=−2. In all cases, t and r as given by the theoretical analy-
sis given above are predicted with a high degree of accuracy.

As discussed at the end of Sec. II C, the derivation of the
interface matrix �12� does not cover the case of 1 /n2� ��
�1/n1. The configuration for this case is depicted in the
upper panel of Fig. 4. We see that this case resembles the
spacelike configuration as in Fig. 2�a� in the region n=n1 and
the time-like configuration as in Fig. 2�c� for n=n2. Note that
now only one of the four fields �F1

+� reaches the interaction
point from the past, while the other three fields propagate
from the interface in positive time direction. It is therefore
not clear how in this case the transmission or reflection co-
efficient can be consistently defined, and neither of the given
definitions of Eqs. �26� and �27� nor Eqs. �30� and �31� are
satisfactory in this case. The theoretical origin of this prob-
lem is that in the region 1/n2� ���1/n1 the transfer matrix
concept is not applicable, due to the fact that for these values
of  the concept of sharp interface cannot be defined, at least

using a dispersionless susceptibility, which does not make
distinctions between long and short wavelengths. In particu-
lar, the condition of Eq. �18� does not necessarily hold in the
above region, as recognized by Ostrovsky �11�. Nevertheless
we can still solve Eq. �2� numerically as shown in Fig. 4�b�,
and we leave the investigation of this complicated issue for a
future publication.

B. Nonstationary photonic crystals and band gap calculation.
Spatiotemporal Bragg reflector

We now use the knowledge built in Sec. II D to calculate
the band structure and the forbidden band gaps of a nonsta-
tionary multilayer structure for different values of , and in
particular we shall enunciate the Bragg condition for a gen-
eralized Bragg reflector.

Let us assume in the following analysis that the periodic-
ity of the multilayer structure is along the p-direction �see
Fig. 5�a� and caption for a description of the geometry of the
problem under consideration�. As in Sec. II D we now deal
with the propagation of plane waves of the form 
�p ,q�
=
�̃�p�e−i�̃q. Similarly to the extensively studied Kronig-
Penney model �18�, we now look for a matrix T such that


�̃�p + �p� = T
�̃�p� �34�

which propagates 
�̃�p� from the center of a layer with re-
fractive index n1 across a layer with refractive index n2 into
the center of the next layer with refractive index n1 as indi-
cated in Fig. 5�a�. The length of this unit cell is given by
�p= p1+ p2, where pj are the widths of the layers of indices
nj along the p-direction. From Eqs. �20� and �23� we obtain

FIG. 4. �Color online� �a� Scattering diagram in the case �0,
1 /n2� ���1/n1, and �b� corresponding numerical simulation. Pa-
rameters are =−0.4 ��=−0.3805 radians, indicated with dashed
lines� and w=1. Refractive indices are n1=1 and n2=3.

FIG. 5. �a� Schematic figure showing the quantities of interest
used in the text to define a general multilayer structure �with indices
nj, j= 	1,2
� for an arbitrary angle � �i.e., arbitrary parameter �. p
indicates the propagation direction for the Bloch waves, while q is
the delocalization direction for plane waves. dj are the widths of the
layers along the z direction, while ctj are the widths along the ct
direction. pj indicate the same quantities but along the p direction.
�p= p1+ p2 is the total length of the unit cell, also indicated in the
figure. �b� Timelike photonic crystal. The refractive index varies
only along the time axis, which therefore coincides with p. The
coordinate z coincides with q, therefore plane waves are spatially
delocalized. For the structure to be a timelike Bragg reflector, which
is totally reflective for a certain wave number band gap, the condi-
tion ctj =nj� /4 must hold, where � is the wavelength of the incident
plane wave.
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T = P1�p1/2�D�12�P2�p2�D�21�P1�p1/2� �35�

where Pj�p� is the propagation matrix according to Eq. �23�
in the medium with refractive index nj. Since D�12�D�21�=1
we observe that �det T�=1. Considering the two eigenvalues
�1

T and �2
T of T we can then distinguish between the follow-

ing two cases: �i� ��1
T�= ��2

T�=1 and �ii� ��1
T��1 and ��2

T��1.
Free propagation will only occur in case �i�, which by

elementary algebra can be shown to be equivalent to

1

2
�Tr�T�� � 1. �36�

In this case it is convenient to write the eigenvalues of T in
the form

�1 = eik̄�peiK̃�p �2 = eik̄�pe−iK̃�p, �37�

where k̄ is calculated via �det T=eik̄�p and K̃ fulfills the re-
lation

cos�K̃�p� =
Tr�T�

2�det T
=

�1 + �2

2eik̄�p

. �38�

Physically k̄ simply gives rise to a common phase factor in

both eigenvalues of T, while K̃ can be interpreted as a gen-
eralization of the Bloch wavenumber in the Kronig-Penney
model for nonstationary interfaces. In particular the explicit

calculation of K̃ via a straightforward analytic expansion of
the trace and determinant of T yields the familiar-looking
expression �18�:

cos�K̃�p� = cos�p1k̃1
��cos�p2k̃2

�� −
n1

2 + n2
2

2n1n2
sin�p1k̃1

��sin�p2k̃2
�� ,

�39�

where

k̃j
� =

k̃j
+ − k̃j

−

2
=

nj�̃

cos2��� − sin2���nj
2 =

�1 + 2�nj�̃

1 − 2nj
2.

�40�

For a given �̃ we can now use Eqs. �39� and �40� to calculate

the appropriate K̃, if it exists. This gives rise to a band struc-
ture relation as shown in Fig. 6 �see also caption�. Note that

 only enters in the band structure calculation via k̃j
�, which

however diverges for →1/nj �cf. Eq. �40��.
The forbidden bandgaps are located in those regions of �̃

for which condition �36� is not fulfilled, i.e. the right hand

side of Eq. �40� is larger than unity and K̃ would have a
non-vanishing imaginary part, making the Bloch waves eva-
nescent. In particular if the quantities pj are chosen such that

pjk̃j
� = �/2, �41�

then one can form a Bragg reflector with total reflectivity
inside the forbidden band gaps in �̃. Condition �41� is analo-
gous to the quarter wavelength condition typical of a Bragg
stack. However, and this is the crucial point, it should be
noted that the meaning of �̃ is different for different values
of . For instance, in the traditional case of spacelike Bragg

stack, i.e., in the limit →0, condition �41� becomes the
well-known �djnj /c=� /2, because in this limit k̃j

�→nj�̃,
�̃→� /c and pj→dj �the width of layer j�, where � is the
initial plane wave frequency. However, in the timelike Bragg
stack, i.e., in the limit →� �see Fig. 5�b��, Eq. �41� be-
comes ktj /nj =� /2, because in this limit k̃j

�→ �̃ /nj, �̃→−k,
and pj→ctj �the duration of layer j� where k is the initial
plane wave wave number, common to all waves.

Figure 6 shows the bandstructure �solid lines� and the
forbidden band gaps �grey areas� in �̃ for a generalized
Bragg reflector that satisfies the generalized quarter wave-
length condition of Eq. �41�, with 0���� /2, as calculated
by solving numerically the transcendental photonic band
equation Eq. �39�. For this special case, all band gaps have
exactly the same extension and the spacing between them is
regular �2�. All momenta in Fig. 6 are normalized to dimen-

sionless units by multiplying by �p, and K̃ is the Bloch

wavenumber. Orthogonal basis ��̃ , k̃� is rotated with respect
to the basis �� /c ,k� of an angle �, indicated in the figure, see
also Eq. �24�. If �→0, �̃→� /c, the two axes coincide and
the bandgaps in �̃ would correspond exactly to the band gaps
in � /c. This is of course the spacelike case of a static, con-
ventional Bragg reflector. For the other extreme case, �
→� /2, �̃→−k, and the bandgaps in �̃ would correspond to
bandgaps in k. This novel configuration corresponds to a

FIG. 6. Band structure �solid lines� and band gaps �gray areas�
of a spatiotemporal Bragg reflector that satisfies the generalized
quarter wavelength condition of Eq. �41�, as calculated by using the
transcendental photonic band equation �39�. According to Eq. �24�,
the orthogonal axes �̃ and k̃ are rotated with respect to the orthogo-
nal axes � and k by an angle �, as indicated in the figure. All
quantities shown are dimensionless, and normalized in units of �p.
For �=0 �spacelike photonic crystal�, the two orthogonal bases

would coincide, i.e., �̃=� /c and k̃=k, and this corresponds to the
case of a conventional, static photonic crystal. For a general �, the
forbidden band gaps in �̃ as calculated by Eq. �39� are shown by
the gray areas. The projection of one of the bandgaps onto the axis
� is also shown, with its new smaller extension indicated by a
dashed double arrow. In the limit �→� /2 �timelike photonic crys-

tal�, �̃ tends to −k, while k̃ tends to � /c, so that the forbidden gaps
in �̃ will correspond to band gaps in k. Note that there is a critical
angle �=�cr1 at which the projected � gap will close, and a second
critical angle �cr2��cr1 at which the k band gaps start to open, until
they reach their full extension at �=� /2.
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time-like Bragg reflector, of the type shown in Fig. 5�b�. In
the intermediate cases 0���� /2, depicted in Fig. 6, the
projection of one of the bandgaps onto the � axis is shown,
and its extension is marked with a dashed double-arrow. It is
clear that for increasing values of � the extension of the
projected �-bandgap is shrinking, until for a certain critical
angle �cr1 its size vanishes, indicating the closure of the fre-
quency gap. A further increase of � will lead to a second
critical angle �cr2, in correspondence of which the bandgaps
projected onto the k-axis gradually start to open, until they
reach their full extension at �=� /2.

With the above discussions we have therefore identified
the novel general concept of a spatiotemporal Bragg reflec-
tor, and hence of a spatiotemporal photonic crystal with a
generalized quarter wavelength condition given by Eq. �41�.

C. Spatiotemporal lenses, pulse compression, and
broadening

Another interesting and potentially useful effect exhibited
by a simple class of spatiotemporal dielectric structures is
what we have called spatiotemporal lensing. Let us suppose
that we have a refractive index distribution in the �z ,ct�
plane of the form:

n�z,t� = n1 + �n2 − n1�exp�− � t − t0

wt/2
�2mt

− � z − z0

wz/2
�2mz .

�42�

In Eq. �42�, z0 and t0 represent the coordinates of the center
of the rectangular region, and wz,t are respectively its spatial
and temporal extension; see Fig. 7. The two integer numbers
mz,t model the sharpness of the super-Gaussian transitions

between n1 and n2 along the spatial and temporal directions
respectively. Equation �42� models a rectangular region in
the �z ,ct� space where the transition between an “external”
refractive index n1 and an “internal” index n2 occurs, see Fig.
7. Here and in the following we shall refer to this region as a
spatiotemporal lens, for reasons that will be clear shortly.

Figure 7 illustrates the essential features of the scattering
of a generic pulse by the rectangular spatiotemporal lens in
the �z ,ct� plane. Essentially two configuration are of interest.
In the first configuration �Fig. 7�a��, after some free propa-
gation in the medium with index n1, the pulse enters the grey
region with index n2 on the left side of the rectangular re-
gion, with the entire body of the pulse well inside the lateral
extension of the rectangle �wt�. The pulse then propagates
inside the structure, at a greater angle in the �z ,ct� plane,
each portion of the pulse following the local light cone �de-
fined in Fig. 1� at any instant of propagation. When the pulse
exits the grey region, however, it is clear from Fig. 7�a� that
its pulse duration has been reduced, and pulse compression
has been achieved. It can be shown by elementary geometri-
cal considerations that the compression ratio between the
output and the input pulses in this simple case is just �
=n1 /n2. The scaling in the �z ,ct� plane is accompanied by an
increase of the central frequency of the pulse by 1/�, with a
consequent increase of the spectral bandwidth. Thus we ob-
tain an effective method for manipulating the frequency and
wave number of a pulse.

The second scenario is when the pulse is delayed in such
a way that it enters the spatiotemporal structure on the bot-
tom side of the rectangle, the extension of which is wz, and
well inside it, see Fig. 7�b�. This case shows exactly the
opposite dynamics of the previous case, and pulse broaden-
ing in the �z ,ct� plane occurs by a factor of �=n2 /n1. As a
consequence the central frequency is reduced. This is of
course not surprising due to the symmetry of Maxwell’s
equations under the time reversal operation.

In Fig. 7 the backreflections at the interfaces, when the
pulse enters the structure and when it leaves it, are not shown
for simplicity, but it is clear from the discussions of the pre-
vious sections that for sharp interfaces of the structure they
are always present.

The scenarios described above are confirmed by direct
numerical simulations, see the panel of Fig. 8. Figure 8�a�
shows the evolution of a spatially and temporally broad input
pulse �w=3 in Eq. �33��. After hitting the leftmost side of the
rectangular spatiotemporal region, the pulse emerges from
the upper side considerably compressed, both in spatial and
temporal domain. Only the interface of the n2 region is indi-
cated for sake of clarity, in order to clearly distinguish the
internal wave propagation. Figure 8�b� shows the compres-
sion dynamics, in which an input pulse with w=1 hits the
structure on the bottom side. The pulse emerging from the
right-hand side acquires a significant broadening. Several
waves propagating backwards are noticeable in Figs. 8�a�
and 8�b�, and these are due to the sharpness of the interface
region, which is modeled by Eq. �42� with the specific pa-
rameters given in the caption.

So far we have considered the extreme cases where both
interfaces are space-or time-like. With the formalism devel-

FIG. 7. Schematic figure showing the mechanism of pulse com-
pression �a� and pulse broadening �b� due to spatiotemporal lensing.
The refractive index of the rectangular region shown is given by Eq.
�42�. The refractive indices outside the rectangle and inside it are
uniform, in the �z ,ct� plane, and equal to n1 and n2, respectively. In
this example, we assume that n2�n1. During the scattering process
every portion of the pulse will travel according to its local light
cone, which is narrower in the gray region �light travels at speed
c /n2�c /n1�, and wider outside it. Backward waves produced in the
scattering are not indicated in the figure for sake of clarity, but they
are always present for sharp interfaces.
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oped in the previous section we can also consider the general
case where a pulse enters a medium with refractive index n2
via an interface characterized by an angle �1 and leaves that
medium via another interface characterized by an angle �2. A
straightforward geometrical analysis gives the rescaling fac-
tor in the �z ,ct� plane as

� = � cos �2 − n1 cos �1

cos �2 − n2 cos �1
�� sin �2 − n2 sin �1

sin �2 − n1 sin �1
� �43�

which as expected reduces to �=n1 /n2 ��=n2 /n1� for the
previously considered cases �1=0 and �2=� /2 ��2=0 and
�1=� /2�.

IV. DERIVATION OF A SLOW-VARIABLE EQUATION.
COMPARISON WITH EQ. (2)

From Eq. �1� it is possible to derive an equation for the
electric field envelope function A�z , t� only, which is of sec-
ond order in the variables z and t, by posing E�z , t�
= �A exp�ik0z− i�0t�+c.c.� /2, where k0=�0 /c and �0 is an
arbitrary frequency, usually and most conveniently chosen to
be close to the central frequency of the input pulse. Using the
dimensionless variables �=ct /�, �=z /�, where �=2�c /�0,
and substituting the expression of the electric field E into Eq.
�1�, we obtain

�in2 −
n��n

�
���A −

n2

4�
���

2A� + i��A +
1

4�
��

2A

+ ��n2 − 1 +
2in��n

�
−

���n�2

2�2 −
n��

2n

2�2 A = 0. �44�

Although Eq. �44� is written for the slow variable A, it is
exact, and it is able to handle arbitrary pulses, and forward

and backward propagation at the same time, due to the fact
that it is completely equivalent to the full wave equation
which can be derived from combining the two Maxwell
equations of Eq. �1�.

It is reasonable to conjecture that the use of the slowly
varying envelope approximation �SVEA� in time in Eq. �44�
is valuable in order to reduce the computational complexity
of the problem. However, as we will show shortly, the use of
SVEA in time but not in space is dangerous in that it leads to
wrong results for pulse propagation, and this is especially
important for the dielectric systems we are investigating in
this paper, which show strong variations in the refractive
index both in space and time. The use of SVEA in space in
Eq. �44� is not permitted in particular when simulating sharp
interfaces and photonic crystals, and in general in those sys-
tems in which the backward propagating waves are of the
same order of magnitude of the forward propagating ones.
Therefore all second derivatives ��

2 must be maintained in
Eq. �44�.

Assuming that the central frequency of the pulse �0 is
much greater than the variation of the envelope function A in
time, we can perform a multiple scale reduction of Eq. �44�,
obtaining the following first order equation in time:

in2��A + i��A +
1

4�
��

2A + ��n2 − 1 +
2in��n

�
A = 0.

�45�

Equation �45� is a generalization to time-dependent refrac-
tive index of the propagation equation used in a series of
works �17�, where temporal variations of n were not taken
into account. Equation �45� shows that the purely real
“Schrödinger potential” n2−1 used in �17� is modified by a
purely imaginary term proportional to the time derivative of
the refractive index, namely i��n

2 /�.
Figure 9 shows the comparison between the scattering of

FIG. 8. �Color online� Simulation showing pulse propagation
and scattering by a spatiotemporal lens in the �z ,ct� plane which
separates two regions with uniform refractive indices n1 and n2, as
schematically described by Fig. 7. �a� A broad pulse �w=3 in Eq.
�33�� hits the rectangle on the leftmost side, and pulse compression
is achieved. �b� A short pulse �w=1 in Eq. �33�� hits the structure on
the bottom side, and pulse broadening is achieved. For the sake of
clarity, only the interface of the rectangle is shown. Parameters of
the simulations are n1=1, n2=3, z0=0, ct0=20�, wt=27�, wz

=15�, mt=mz=20, and � is an arbitrary scale which we take equal
to the central pulse wavelength. Horizontal axis is dimensionless
space coordinate �=z /�, while the vertical axis is dimensionless
time coordinate �=ct /�, and � is the central pulse wavelength.

FIG. 9. �Color online� Comparison between pulse evolution de-
scribed by �a� the full Eq. �2� and �b� the approximate Eq. �45�,
which was derived under assumption of SVEA in time. The two
simulations are carried out under absolutely identical conditions.
Parameters are =−0.2, �=−0.2027, w=1, n1=1, and n2=3. In �b�
one can notice an unphysical artificial broadening along the z direc-
tion due to the uncompensated term proportional to the second de-
rivative in space ��

2 in Eq. �45�. Horizontal axis is dimensionless
space coordinate �=z /�, while the vertical axis is dimensionless
time coordinate �=ct /�, and � is the central pulse wavelength.
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a pulse by a sharp interface, when calculated by means of the
full Eqs. �2� �Fig. 9�a�� and by means of the approximate
equation �45� �see Fig. 9�b��, under absolutely identical con-
ditions. Although the two equations give very similar results
for what concerns the transmission and reflection coeffi-
cients, the most striking difference between the pulse evolu-
tion in the two cases is the presence of a fictitious and un-
physical broadening along the z-direction in Fig. 9�b�. This is
due to the fact that the use of SVEA in time but not SVEA in
space in Eq. �45� leads to an uncompensated “diffractive”
term proportional to ��

2A, which is responsible for the broad-
ening observed in Fig. 9�b� for all waves participating in the
scattering.

The above considerations provide a justification of the use
of the full Maxwell equations throughout the present paper,
instead of equations using slow variables.

V. DISCUSSION AND CONCLUSIONS

Before concluding, we would like to spend a few words
on the experimental relevance of the topics discussed in the
present paper.

Many theoretical and experimental results exist in the lit-
erature, that discuss the interaction of electromagnetic pulses
with a plasma front �19–24�. This interaction has been typi-
cally used in practice to shift the central frequency of an
incident pulse by means of the effect discussed in Sec. III C,
see Refs. �21�, or to convert static electric fields into electro-
magnetic pulses by means of a capacitor array �23�. These
effects may turn out to be extremely useful in the creation of
efficient tunable laser sources �19�. For instance, in typical
experiments �20�, when a “probe” pulse is propagating along
the longitudinal coordinate of a semiconductor waveguide,
one can change the refractive index of the material along all
its spatial extension by means of irradiating the plane of the
crystal with another ‘source’ pulse that creates a electron-
hole plasma throughout the crystal. If the source pulse has a
certain angle of incidence � with respect to the normal to the
plane of the waveguide, then the ionization front of the
plasma will move with velocity v=c / sin��� �19,24�. Note
that for normal incidence ��=0�, this front moves instanta-
neously, and it corresponds to the time-like interface ��
→� /2, where the general relation between � and � is �
+�=� /2� discussed in Sec. III A, which follows from a si-
multaneous change of refractive index throughout all the
spatial extension of the crystal. This front does not carry any
information, and it is not associated to any moving object,
therefore its propagation is not limited by the speed of light
in vacuum. In all these cases, none of the actual particles in
the excited medium is moving faster than c; instead, the front
profile only has an apparent motion, which can be character-

ized by an effective velocity given by the above formula, but
does not correspond by any means to any real superluminal
motion of particles or information, which is of course forbid-
den by special relativity. In this sense, n�z , t� can be a totally
arbitrary function with no relation whatsoever to moving
bodies. In another kind of experiments �24�, short pulses of
the order of nanoseconds are created by irradiating a metal
surface by X-rays at a certain angle of incidence �, which
creates a photoelectric current. Again, this current undergoes
an apparent motion at a velocity v=c / sin��� and, by means
of superluminal self-phasing of the excited elementary di-
poles �predicted by Carron and Longmire in 1976 �24��,
emits a short electromagnetic pulse at the same angle �. It is
also interesting to point out that the processes described
briefly above can also have considerable implications for the
physics of astrophysical plasmas �23�.

A remark which is important for the present work is that it
is assumed that the physical experiments well approximate a
condition of quasi-one-dimensional propagation of the inci-
dent probe pulse, therefore implying a well-localized con-
finement of the transverse profile by means of a strong
waveguiding process which does not allow diffraction, so
that the equations we have derived in this paper, having the
transverse �x, y� and the longitudinal �z� degrees of freedom
decoupled, can be safely utilized.

In conclusion, in this paper the physics of light propaga-
tion scattered by nonstationary interfaces has been investi-
gated analytically and numerically in a unified approach. In-
terface transfer matrix and propagation matrix have been
found for the general case of arbitrary velocities of the inter-
face. These ingredients have been used to construct more
complicated spatiotemporal dielectric structures. In particu-
lar, we have first investigated a spatiotemporal Bragg reflec-
tor, where we have given the generalized condition for the
existence of forbidden band gaps, and found that the fre-
quency band gaps close for a critical value of �=�cr1, with
the successive opening of the wave number band gap at a
second critical angle �=�cr2. Secondly we have explored
light scattering by a spatiotemporal lens device, and the
spectral manipulation of pulses has been demonstrated both
analytically and numerically, the most important aspect of
which is a potentially strong pulse compression and broad-
ening.

Future works include the natural extension of the theory
given here to a dispersive susceptibility.
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